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An asymptotic analysis of the compressible turbulent boundary-layer equations is 
carried out for large Reynolds numbers and mainstream Mach numbers of O(1). 
A self-consistent two-layer asymptotic structure is described wherein the time-mean 
velocity and total enthalpy are logarithmic within the overlap zone but in terms of the 
Howarth-Dorodnitsyn variable ; the proposed structure leads to a compressible law of 
the wall for high-speed turbulent flows with surface heat transfer. Simple outer-region 
algebraic turbulence models are formulated to reflect the effects of compressibility. To 
test the proposed asymptotic structure and turbulence models, a set of self-similar 
outer-region profiles for velocity and total enthalpy is obtained for constant-pressure 
flow and for constant wall temperature; these are combined with wall-layer profiles to 
form a set of composite profiles valid across the entire boundary layer. A direct 
comparison with experimental data shows good agreement over a wide range of 
conditions for flows with and without surface heat transfer. 

1. Introduction 
Prediction of high-speed compressible turbulent flows near solid boundaries is 

hampered by several practical difficulties, some of which are associated with the 
uncertain quality of available turbulence models, while others are primarily 
computational in nature. Algebraic models represent the simplest type of mathematical 
models that describe the effect of turbulence near a solid wall, but even when higher- 
order closure schemes are contemplated, many of the critical modelling issues concern 
the functional form of the velocity and temperature profiles in the overlap zone near 
the surface, where both profiles exhibit a logarithmic dependence on normal distance 
from the wall. Examples of modern algebraic models include the Cebeci-Smith (1974), 
the Baldwin-Lomax (1978), and Johnson-King (1985) models. The essence of these 
formulations is a simple ramp function for eddy viscosity in the outer part of the 
boundary layer (see also Mellor & Gibson 1966) which behaves linearly in distance from 
the wall near the surface and then abruptly changes to a constant whose value depends 
on the local flow conditions. Sometimes ‘intermittency ’ factors are also introduced in 
order to reduce the eddy viscosity to zero far from the wall, but such modifications are 
generally found to have relatively little impact on the shape of the velocity profile. Eddy 
viscosity models are typically modified to a mixing length formulation in the wall layer 
(between the surface and the overlap zone); the mixing length is defined to be linear in 
the overlap zone, but is then reduced toward the wall through multiplication by the 
Van Driest damping factor (see, for example, Cebeci & Smith 1974). 

It is well known that algebraic turbulence models yield good predictions for attached 
turbulent flows (see, for example, Kline, Cantwell & Lilley 1981) at low to moderate 



160 J .  He, J .  Y. Kazakia and J. D. A .  Walker 

subsonic speeds, where an extensive base of reliable experimental data is available to 
validate the computed results. Such models are often used almost without modification 
in prediction methods for supersonic turbulent boundary layers (see, for example, 
Talcott & Kumar 1985), the implicit assumption being that a compressible ‘law of the 
wall’ exists which is similar to the incompressible form (see, for example, Viegas, 
Rubesin & Horstman 1985; Carvin, Debieve & Smits 1988). However, the 
generalization of the ‘law of the wall’ to compressible flow has been somewhat 
controversial, and a number of different functional forms have been proposed (see, for 
example, Van Driest 1951 ; Rotta 1960; White & Christoph 1972; White 1992). Perhaps 
the most popular formulation is the ‘effective velocity’ approach of Van Driest (1951); 
this constitutes a particular extension of the incompressible formulation, wherein the 
mixing length for compressible turbulence is also assumed to be linear in physical 
distance from the wall within an anticipated overlap zone between the wall layer and 
outer region. Upon accounting for a variation in density, an incompressible form of the 
law of the wall is ultimately derived but in terms of an effective velocity, obtained 
from the actual mean streamwise velocity through a transformation involving an 
inverse sine function. This has come to be known as the Van Driest transformation and 
strictly should be expected to yield only a localized description of the velocity profile 
(since it is based on a specific type of mixing-length model within the overlap zone). 
However, Make & McDonald (1968) found that a substantial amount of adiabatic- 
wall profile data could be collapsed when an effective velocity was defined across the 
entire boundary layer. Although the approach appears to be less impressive when there 
is heat transfer at the wall (Maise & McDonald 1968), the Van Driest transformation 
is used extensively in analysis of profile data and, sometimes, to infer values of skin 
friction at the surface from measured velocity profile data. A critical discussion of the 
transformation is given by Fernholz & Finley (1980). 

There are some aspects of the Van Driest transformation which could be regarded 
as disadvantageous. First the transformation is based on a specific type of turbulence 
model (mixing length) in the overlap zone and other types of models, such as eddy 
viscosity, produce a different functional form for compressible flow for the velocity in 
the overlap zone (Degani et al. 1991); this situation may be contrasted with the case 
of incompressible flow where all turbulence models are implicitly constructed to 
produce a universal logarithmic law of the wall. A second point is that it is difficult to 
assess the circumstances under which the Van Driest transformation becomes invalid 
with increasing surface heat flux and/or increasing mainstream Mach number. Lastly 
the inverse sine behaviour contained in the velocity distribution for this model can be 
somewhat awkward in a numerical prediction algorithm. For these reasons, a principal 
objective of the present study was to search for an alternative, and potentially simpler, 
theoretical description of the compressible turbulent boundary layer. 

It is well known (Stewartson 1964) that the Howarth-Dorodnitsyn variable Y 
defined by 

Y = r’dn, 
0 Po 

is an appropriate normal coordinate in the description of compressible laminar 
boundary layers; here p is the density, po is a reference density, and n measures physical 
distance from the wall. The variable Y may be interpreted as a density-averaged 
distance from the wall and the motivation behind such compressibility transformations 
is to convert the problem into a simpler form similar to incompressible flow. It might 
be expected that a similar transformation can be used in compressible turbulent flows 
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and this question has been taken up by Burggraf (1962), Crocco (1963) and Coles 
(1964), among others, who have discussed a variety of possible approaches. Implicit in 
many of these studies is the idea of a ‘reference condition’ at which the variable 
thermodynamic properties are to be evaluated, in the hope that the gross properties of 
the boundary layer may be represented by corresponding established incompressible 
formulae. For laminar compressible boundary layers, the ‘reference’ density po in 
equation (1) is usually taken to be the density at the wall, but a dilemma exists for 
turbulent flows since a suitable reference density is not immediately apparent. In the 
outer portion of the turbulent boundary layer, the mean density can be expressed as 
a perturbation from the mainstream value. On the other hand, even for an adiabatic 
wall, the density at the surface is often substantially different from the mainstream 
value and there is an intense variation in p across the inner wall layer. Consequently, 
a difficulty exists in defining a density which is characteristic of both portions of the 
boundary layer, and this issue will be subsequently addressed here. 

A main thrust of the present study is to introduce the Howarth-Dorodnitsyn 
variable, with a suitable choice for po, in the description of the turbulent boundary 
layer and further to propose that the mean velocity profile in the overlap zone may be 
conveniently represented in a form which is logarithmic in Y.  Starting from this 
premise, it is shown that a self-consistent asymptotic two-layer structure, valid in the 
limit of large Reynolds number, Re, may be constructed. To obtain velocity and 
temperature profiles, a simple algebraic turbulence model, which is a generalization of 
existing incompressible turbulence models, is formulated. The eventual test of the 
proposed structure which is carried out here constitutes a direct comparison with 
experimental skin-friction velocity and total-temperature profile data. These com- 
parisons strongly support the premise of a universal compressible law of the wall in 
terms of the Howarth-Dorodnitsyn variable. 

Established theoretical results for the temperature distribution in compressible 
boundary layers are relatively scarce. For low-speed subsonic flows, the data for the 
static temperature distribution (Weigand 1978) clearly display a logarithmic behaviour 
in the overlap zone. However, the value of the slope of the temperature profile in the 
overlap zone (unlike that of the velocity profile), appears to vary with pressure gradient 
and local flow conditions (Weigand 1978). In supersonic boundary layers, the total 
enthalpy plays a similar role to the static temperature at low speeds, but direct 
measurements of this quantity, particularly in the overlap zone, are relatively rare. 
Consequently, it is somewhat difficult to estimate accurately the slope of the total 
enthalpy profile in the overlap zone from existing experimental data, or in some cases 
to ascertain even if the total enthalpy is logarithmic there. At subsonic speeds, the 
turbulent heat flux terms in the energy equation are usually modelled by an algebraic 
model in which an ‘eddy conductivity’ is related to the eddy viscosity through a 
turbulent Prandtl number. However, inferred distributions of the turbulent Prandtl 
number are not generally found to be constant, even in low-speed thermal boundary- 
layer flows (Crawford & Kays 1980, p. 226), and often additional semi-empirical 
relations are introduced in prediction methods so that the turbulent Prandtl number 
varies across the boundary layer. For high-speed compressible flow, similar modelling 
concepts are often employed, as well as various semi-theoretical versions of the Crocco 
relations (Fernholz & Finley 1977). In the present study, one goal was to treat the 
thermal problem independently from the velocity problem and without introducing a 
turbulence model based explicitly on either a turbulent Prandtl number, or semi- 
theoretical version of the Crocco integral. Here a self-consistent structure is presented 
for the total enthalpy distribution in the boundary layer, which is logarithmic in the 
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overlap zone in the variable Y ;  a formula for the slope of the total enthalpy is derived, 
as well as a relationship from which the surface heat transfer at the wall can be 
evaluated. Again, the proposed structure is tested by comparing total enthalpy directly 
with the recent experimental data of Carvin (1988), as well as other existing data sets 
catalogued by Fernholz & Finley (1977, 1981). 

One motivation of this investigation was to provide a theoretical foundation for 
more efficient algorithms for the prediction of high-speed compressible turbulent 
boundary layers. For subsonic two-dimensional boundary layers, it is well-known that 
the inner wall layer exhibits a self-similar behaviour (Fendell 1972). In the embedded- 
function methodology described by Walker, Werle & Ece (1991), the self-similar wall- 
layer structure is incorporated in a prediction method by representing the mean 
velocity and total enthalpy distributions by analytical profiles across the entire wall 
layer; the profile models are derived through consideration of the coherent structure 
and dynamics of the near-wall flow (Walker et al. 1989; Smith et al. 1991). In the 
embedded-function algorithm, a conventional numerical solution is matched sys- 
tematically to the wall-layer functions and Walker et al. (1989) demonstrate that up to 
a 50 % reduction in total mesh points (as well as computational effort) can be achieved 
with no degradation in accuracy, as compared to a conventional scheme that computes 
the flow all the wall to the wall. For three-dimensional subsonic turbulent boundary 
layers, a similar but more complicated similarity structure exists in the wall layer for 
attached turbulent flows (Degani, Smith & Walker 1993; Degani & Walker 1993). 

Because the embedded-function approach requires the smooth joining of an exterior 
numerical solution to a set of inner-region functionals, which are logarithmic near the 
surface, the numerical algorithms involved are not straightforward. A crucial step in 
the methodology is the determination of the appropriate asymptotic scaling laws for 
the velocity and total enthalpy in the overlap zone. This is carried out in the present 
paper through the development of asymptotic expansions, which describe the structure 
of the solution of the compressible boundary-layer equations for large Reynolds 
number. The turbulence models used in the present study for the outer-region are 
simple eddy viscosity and conductivity models and are similar to the Cebeci-Smith 
(1974) and Baldwin-Lomax (1978) incompressible models; their functional form for 
high-speed compressible flow is guided by the results of the present asymptotic 
analysis. These models have been selected here as the simplest possible outer algebraic 
models in order to demonstrate the concepts involved. For the wall layer, a set of 
embedded functions for velocity and total enthalpy is described, as well as matching 
conditions in the overlap zone from which skin-friction and heat-transfer coefficients 
can be found. In order to test the results of the asymptotic theory, as well as the 
turbulence models, a limiting case is considered corresponding to self-similar profiles 
that evolve in a constant-pressure flow with heat transfer; in this situation, the 
governing equations in the outer region of the boundary layer reduce to ordinary 
differential equations, for which either exact analytical solutions or accurate numerical 
solutions may be found. The outer-layer profiles are then matched to the embedded 
wall-layer functionals to form a set of composite profiles of velocity and total enthalpy 
across the entire boundary layer. These profiles were then compared directly with 
experimental data over a range of Mach numbers and the agreement is very 
encouraging. 

The turbulent transport of thermal energy is commonly modelled utilizing the 
concept of a turbulent Prandtl number Pr,. Measurements suggest that (at least in low- 
speed flows) Pr, is close to constant in the outer layer but exhibits a significant variation 
across the wall layer (see, for example, Crawford & Kays 1980, p. 226). This type of 
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model is also considered here, and it is shown that if a constant turbulent Prandtl 
number model is used in the outer layer, the value cannot be specified arbitrarily. For 
constant-pressure flow, an expression is derived for the outer-layer value of Pr, as a 
function of Mach number and Prandtl number. The predicted value of Pr, for low- 
speed airflow is in good agreement with previous empirical estimates. 

The plan of the paper is as follows. In $2, the governing equations for the 
compressible turbulent boundary layer are described in terms of the Howarth- 
Dorodnitsyn variable. A general analysis of the leading-order wall layer is given in 
$ 3 while the outer layer is discussed in $4. The compressible turbulence models for the 
outer layer are described in $ 5 .  In $6, the special set of profiles for velocity and total 
enthalpy in a constant-pressure flow are given. The reference condition and the 
constant turbulent Prandtl number model are described in $97 and 8 respectively. 
Detailed comparisons with experimental data are discussed in $ 9. 

2. Governing equations 
In this section, the basic equations governing either a two-dimensional or an 

axisymmetric nominally steady turbulent boundary-layer flow are summarized. 
Dimensionless variables are defined utilizing a reference length LFef, a speed UFef, a 
viscosity pFef, a density pFef.and static temperature TFef; in addition the total enthalpy 
His  made dimensionless with respect to c3 TFef, where c; (the specific heat at constant 
pressure) is assumed constant. The Reynolds number, reference Mach number and 
Prandtl number are defined by 

Here R is the gas constant and y = cf/c,* is the ratio of specific heats, which is assumed 
constant; p* and k* are the dimensional absolute viscosity and thermal conductivity. 
The Prandtl number is assumed constant and 0(1),  with the Reynolds number being 
large. The ideal gas law (in dimensionless variables) 

P = pT/yM,2ep (3) 

is taken as the equation of state. 
An orthogonal coordinate system is defined with (s, n )  measuring distance along the 

contour of the wall and normal to it, respectively, with (u, v) being the corresponding 
mean velocity components. The governing equations may be written in a simplified 
form using the Howarth-Dorodnitsyn transformation (Stewartson 1964) defined by 
eauation (1 )  and 

Let r(s) denote the dimensionless radius of revolution for an axisymmetric body (with 
respect to some typical radius r,*) and, for the two-dimensional case, take r = 1 in what 
follows. It is easily shown that the compressible turbulent boundary-layer equations 
may be written 

a a 
as ay 
-(ru)+-(rC) = 0, ( 5 )  
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where here (and throughout) a subscript e denotes a known quantity at the boundary- 
layer edge; in addition, 7 and q are the total stress and energy flux (toward the surface) 
defined by 

respectively, with CT and q5 denoting the Reynolds stress and a turbulent energy flux 
defined by ~ ~ 

in terms of time averages of fluctuating quantities. The boundary conditions are 
g = - ~ u ' v ' ,  $ = -pv'H', (9) 

u=v"=O at Y=O;  u+Ue  as Y+m,  (10a, b) 
H = H w  at Y = O ;  H+He as Y+m, (1 1 a, b) 

for known wall temperature; for an adiabatic wall, (1 1 a) is replaced by aH/a Y = 0 at 
Y=O. 

For steady flow, He is a constant and the Mach number in the mainstream is related 

The total enthalpy H may be written in terms of the static temperature T and u (in the 
variables) according to present dimensionless 

and it is easily shown 

- = [l ++(y- 1)M3 --fa- . 
T, T ([ :J 

Since the pressure does not vary to leading order across the boundary layer, it follows 
from ( 3 )  that p,/p = T/T,. Consequently, the density ratio of the right-hand side of (6) 
may be general be replaced by the right-hand side of (14), and the pressure gradient 
term in (6) can be shown to be as follows: 

Lastly, the viscosity p is taken to be a known function of temperature alone, such as 
the Sutherland relation, or the empirical formula due to Keyes (1952) discussed by 
Fernholz & Finley (1977). From (1 5), it may be inferred that the compressible problem 
in (5E(7) is defined solely in terms of the unknowns u, 6 and H.  Simpler subsets of these 
equations in the limit Re+ co will now be identified. 

3. The wall layer 

usual manner according to 
Consider first the wall layer and define the dimensionless friction velocity u, in the 
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For incompressible turbulent flow, Fendell (1 972) and Mellor (1972) have presented 
particularly insightful analyses which identified the appropriate length and velocity 
scales in the wall layer for large Reynolds numbers; their work reproduces the familiar 
classical results and a similar approach will be used here. For the compressible wall 
layer, it is assumed that, with the compressibility transformation ( 1 )  and characteristic 
fluid properties po and ,uo, the velocity in the wall layer is a function of 7,, po, ,uo and 
Y,  as for incompressible flow; this suggests a functional relation of the form 

u = Urof@OU7, Y/PJ, (17) 
where uTo is a general velocity scale defined by 

Note that u,, reduces to u, in the limiting case of incompressible flow or if the 
characteristic density po is taken equal to p, for compressible flow. 

A central assumption in the present study is that the velocity in the wall layer (as 
for incompressible flow) may be formally defined in terms of a scaled inner variable by 

u,,, = ( ~ , / ~ o ) l ’ ~  =  PO)^" u7. ( 1 8 )  

u=u,,U+(Y+)+ ..., Y + =  Y/Ai,  (19a7 b )  

where di(Re)  is proportional to the thickness of the wall layer and the profile function 
U +  satisfies 

1 
a Y+ K 

- 1 at Y+ = O ;  U+ --logY++Ci as Y++co. (2Oa-c) 
au+ u+=o, -- 

The second of these conditions is a conventional convenient normalization. In the 
logarithmic law ( ~ O C ) ,  K is the von KarmBn constant and Ci is the inner-region log-law 
constant, which are usually assumed to have universal values of K = 0.41 and Ci = 5.0. 
Using (l), (16), (18) (19a) and (20b), it is readily shown that Ai  is defined by 

Ai =  to ~w/@iReu7o). (21) 
It is easily verified that for incompressible flow A,  reduces to ,u,/@, Reu,) and (19b) 
becomes the definition of the conventional inner variable y+ = pz u,* n* /pz ;  here the 
asterisk superscripts denote the corresponding dimensional quantity. For compressible 
flow, Y+ is proportional to y+ close to the wall; elsewhere in the wall layer, the scaled 
normal variable Y+ implicitly contains a density variation through the definition of Y 
in ( 1 ) .  

For low-speed flows (see, for example, Fendell 1972 and Smith et al. 1991), it is well 
known that, because the wall layer is thin and the streamwise velocity is small, the 
viscous and Reynolds stress terms are dominant in (6)  in the limit as Re+ GO, while 
both the convective terms and streamwise pressure gradient are negligible to leading 
order. These same features of the compressible wall layer may easily be checked using 
the scalings that will be adopted here; a more formal development is given by He (1993). 
Equation (6)  then reduces to a7/aY+ = 0, and thus the total stress is constant across 
the wall layer to leading order and equal to the value at the wall; therefore in the wall 
layer 7 = p, u,2 = po u:, and using @a),  it follows that 

According to ( ~ O C ) ,  the velocity is taken to be logarithmic in Y+ in the overlap zone 
(where Y++ co) and it follows that 

‘ ~ + p ~ u ~ , = p ~ u ~  as Y++co, (23) 
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to leading-order. It is important to note that any Reynolds stress model for the outer 
layer must behave according to (23) in the overlap zone. 

In view of (23), the Reynolds stress in the wall layer is expanded as 

0- = p o U ~ o a l ( Y + ) + . . . ,  (24) where cr1 must satisfy 

a , = O  at Y+=O; g I + l  as Y++oo. (25 a, b) 

which relates the two profile functions U +  and g1 (one of which must be specified to 
define a specific closure model in the wall layer). As shown in Appendix A for gases in 
which the viscosity is a function of temperature alone, the Chapman-Rubesin density 
viscosity law pp = pwpw (Stewartson 1964) may be utilized in the wall layer; this results 
in a further simplification of (26). Since the convective terms do not enter the leading- 
order wall-layer equations, the dependence of the solution on the streamwise variable 
s can at most be parametric and v1 and U+ are principally functions of Y+. In this study 
the turbulence model that will be used for the wall layer consists of direct specification 
of a profile function for U+ to be described in $5. 

Now consider the thermal problem. Again, the convective terms are negligible to 
leading order in the wall layer and (7) reduces to aq/aY+ = 0. Consequently q is 
constant to leading order across the wall layer and equal to the value at the wall qw. 
It follows from (8 b) that 

But since u and $ vanish at Y+ = 0 

Thus qw denotes a dimensionless heat flux at the wall (from fluid to the wall; see 
Appendix B) defined by 

where asterisk superscripts denote dimensional quantities and kz  is the dimensional 
thermal conductivity of the fluid at the wall. 

It will subsequently be shown (in $4) that qw is U(U:~/  U:) and since u is U(uT ) in the 
wall layer, it is easily verified that the third term on the right-hand side of (27) is 
negligible to leading order, provided (uTo/ U,) < 1. Thus the following expansions 
for total enthalpy and the turbulence heat flux term are indicated: 

H =  H,+%o++ ..., $ = qw$l+... 
Po UT0 

Here $1 and O+ are profile functions of Y+ and Pr, one of which must be specified to 
define closure for the total enthalpy equation in the wall layer. The analysis of Weigand 
(1978) and Walker, Scharnhorst & Weigand (1986) indicates that the profile function 
B+ should exhibit a dependence on the square root of Prandtl number according to 

B+ = O+( Y i ) ,  Y i  = Pr”’ Y+. (3 1) 
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In terms of YB+, (27) gives 
1 pp ao+ 

Prllz pw pw a Y; + # l  = 1, __-- 

which also may be simplified using the Chapman-Rubesin law (Appendix A). Here 8+ 
and #1 must satisfy 

(344 b) 
1 

O+--logY,f+B,, #1+1 as Y,f+co. 

For total enthalpy, K~ plays the role of the von Karman constant in the velocity 
distribution. However, it will be shown (in $4) that K~ is not constant in general and 
depends on local flow conditions. 

It is worthwhile to emphasize that the general relationships described in (32)-(34) are 
independent of a specific thermal closure model; furthermore, any model adopted for 
the turbulent energy flux # in the outer layer must conform to the behaviour 

in the overlap zone between the outer region and the wall layer. In this study, the 
turbulence model used for the wall layer is a profile function O+ that will be described 
in $ 5 ,  where formulae for K~ and Bi will also be developed. 

Kg 

#+qw as Y,++co, (35) 

4. The outer layer 
In the outer layer, the normalized variable 7 = Y / d o  is introduced; here do@, Re) is 

a scaling parameter proportional to the local boundary-layer thickness which will be 
selected subsequently. A stream function is defined by 

which satisfies (9, and the streamwise velocity and total enthalpy are written in a 
defect-law form according to 

, H = He(l +q* GI+...). (37a, b)  

Here 4 and 8, are defect functions of (s, 7) to be determined and the gauge functions 
u* and q* are defined by 

so that the defect terms have the same order as in the wall layer in order to permit 
matching to the profiles in (19a) and (30a); it will subsequently be shown that 
both u* and q* are small for Re large. The corresponding expansion for the stream 
function is 

In addition, the total stress and energy flux in the outer layer must be comparable to 
the corresponding quantities in the wall layer, and upon comparison with (24) and 
(30b), 7 and q are expanded according to 

where T,, Ql+ 1 as 7 + 0  in order to match the wall-layer solution. 

(39) II. = do(s, Re) ue(s) 4s )  [7 + U* E;(s, 7) + * * *I . 

7 = p 0 u ~ , ~ ( s , q ) + . . .  , q =  q,Q,<s,q>+..., (40 a, b) 
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The defect functions in (37) must satisfy 

in order to match to the mainstream, and near the wall both are taken to be logarithmic 
according to 

ar;, 1 1 

a7 K KO 
---log7+C,, O,--logv+B, as 7+0, 

in accordance with the present proposed structure; this logarithmic behaviour ensures 
the existence of an overlap region between the inner and outer layers. Note that the 
general form of these conditions applies for any attached turbulent boundary-layer 
flow; C, and B, are functions of s (to be found) and the actual streamwise distribution 
of these quantities is strongly influenced by the particular outer-region turbulence 
model adopted. 

Matching of the velocity profile in the overlap zone is carried out using the 
asymptotic forms (20c) and (42a), and it is easily shown, using (19a) and (37a) that 

- 1 = !log L L  Re U,  u* A ,  

u* K w P w  
(43) 

This velocity matching condition relates the skin friction to the outer scale A, ,  as well 
as the profile parameters C, and Ci. Similarly matching of the inner and outer total 
enthalpy profiles using (30a), (34a), (37b) and (42b) yields the thermal matching 
condition 

1-I, - log LL Re U, u* A ,  + B, - B,, 
4* K O ( 4  w P w  

(44) 

where I, = Hw/He. This condition relates the heat flux at the surface to the parameters 
associated with the velocity and total enthalpy profile. 

It is easily verified upon substitution of (37a), (39) and (40a) into the momentum 
equation (6) that, in order to have a balance the total stress and convective terms, 
A ,  = O(u,). It follows from (43) and (44) that 

u,+O, q*+O as Re-tco. (45) 

Furthermore it is evident from (43) and (44) that for K~ = O( 1) and I, =l 1, q* = O(u,). 
Substituting the expansions (37) and (40) into (6) and (7) and neglecting quadratic 
terms in the small quantities u* and q* leads to 

where the prime denotes differentiation with respect to s. 
It may be noted that for specified wall temperature the thermal match condition (44) 

contains two additional unknowns, K~ and q*. In a conventional approach (see, for 
example, Cebeci & Smith 1974), some type of turbulent Prandtl number formulation 
is used to define a turbulent heat flux model for the outer region which thereby 
implicitly defines a constant value for K ~ .  This is one of two types of models which will 
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be considered subsequently, but for the present the analysis will remain general. In the 
limit of large Reynolds number, the logarithmic terms dominate the right-hand side of 
(43) and (44), and it follows that 

Consequently K~ can be expected to exhibit a significant dependence on local conditions 
(Weigand 1978). 

In the present study, the value of K* is taken to be defined by the asymptotic result 
(48); this effectively fixes the most significant aspect of the turbulence model for the 
total enthalpy equation, namely the slope of total enthalpy in the overlap zone. The 
thermal match condition (44) serves to determine the heat-transfer parameter q* for 
given values of Prandtl number, wall temperature, and u,; the characteristics of the 
outer- and inner-layer profiles enter through the log-law parameters B, and Bi 
respectively. In practice, K* may be calculated from (48) (with K = 0.41) for a given 
estimate of q* and u*, and then q* is updated using the full thermal match condition 
(44); both quantities may then be refined through an obvious iteration (Weigand 1978). 
An alternative approach was used here. In order to ensure matching of the total 
enthalpy profile, the full thermal condition (44) must be satisfied. Using (43) to 
eliminate A ,  from (44) and with (48), it is easily shown that 

In the turbulence models that will be described in $ 5 ,  both B, and Bi are implicit 
functions of K~ and, consequently, (49) becomes a nonlinear equation for K ~ .  

It is possible to express K* in terms of a Stanton number defined by 

and (48) gives K~ = ~p~ St/(po u",. However, a disadvantage of the Stanton number in 
a high-speed compressible flow is that St may become very large for a heated wall when 
H ,  is close to He. A heat transfer parameter Q, suggested by Fernholz & Finley (1977) 
avoids the difficulty and is defined by 

9, Po Q, = = -4* u*, 
~w ue He ~w 

which is bounded in all situations; K* can be expressed in terms of Q, by 

5. Turbulence models 
The asymptotic structure described in $03 and 4 is independent of any particular 

turbulence model. However, in order to produce profiles that can then be compared 
with experimental data, it is necessary to introduce specific turbulence models; here 
relatively simple algebraic models will be formulated for the outer layer. Models, 
such as the Cebeci-Smith (1974) and the Baldwin-Lomax (1978) eddy-viscosity 
formulations, were originally developed and refined for relatively low-speed flows. 
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Such models are often utilized in high-speed compressible flow. Here some basic 
modifications will be considered to account for the significant density variations that 
can occur in supersonic boundary layers and at the same time cast the models in terms 
of the Howarth-Dorodnitsyn variable. Simple algebraic models are of the form 

where e and eH are the total effective viscosity and conductivity, respectively. Note that 
q is sometimes written in terms of the gradient of the static temperature and that for 
low Me both formulations are equivalent. Throughout the bulk of the outer layer, 7 
and q consist primarily of Reynolds stress and turbulent flux respectively. Consider first 
the eddy-viscosity function. In terms of the Howarth-Dorodnitsyn variable Y defined 
in (1) and the scaled outer variable 

7 = peau/an, q = pc, aH/an, (53a, b) 

From (37a) and (42a), it follows that 

But in the wall layer the total stress is constant with 7 = pw u," = po u:~, and in order to 
provide a smooth transition between the inner and outer layers, the eddy viscosity 
function must have the following form for small 7:  

This linear behaviour in Y is a necessary feature of all proper outer-region models and 
is required to produce the assumed logarithmic behaviour in the mean profile in the 
overlap zone. However, an additional important aspect of (56) is the functional 
dependence on the density that is mandated near the overlap zone. 

For larger values of Y, the linear dependence on Y must be modified and simple far- 
field eddy viscosity formulae for low-speed compressible flow are normally of the form 

Here K is a constant that is usually assigned a value of K = 0.0168 and x is a function 
e,, = Kx. (57) 

of s such that 

for the Cebeci-Smith (1974) and the Baldwin-Lomax (1978) models, respectively. Here 
6* is the kinetic (or incompressible) displacement thickness defined by 

For the Baldwin-Lomax (1978) model, nmaX is the physical distance for the wall where 
the function F = n lau/anl achieves a maximum, with FmaX being the corresponding 
value of F;  C,, is a constant (having a value of about 1.6) which has been adjusted (see 
Baldwin & Lomax 1978) so that the model produced has essentially similar results to 
the Cebeci-Smith (1974) model at low Mach numbers; recently He & Walker (1995) 
have shown that a value of C,, = 1.73 produces an exact correspondence between the 
two models for constant-pressure flows. The linear variation of the eddy viscosity for 
small 7 is normally joined to (57) as a simple ramp function, with the juncture being 
determined as the location where the two formulae give the same value. It is noted in 
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passing that mixing-length formulations are commonly used close to the wall (see, for 
example, Cebeci & Smith 1974); however, for low-speed flows, u is logarithmic in the 
overlap zone and the mixing-length formulation is equivalent to using an eddy- 
viscosity model which is linear in y in the near-wall region. 

For high-speed compressible flow, a corresponding simple formulation is desired. In 
the present study, three requirements of the model were considered important : (i) the 
asymptotic behaviour in (56) for small 7; (ii) a far-field behaviour that reduces to (57) 
for low Mach numbers; and (iii) wide applicability over a range of Mach numbers 
without introducing additional empiricism. There are a number of functional forms 
that would fulfil these three requirements, and many of these were tested pragmatically 
in this study. In the adopted compressible models, it proved convenient to carry the 
variation in density indicated by (56) across the outer layer and the eddy-viscosity 
function was written in the form 

e = -  u, S*2(7). 
P2 

In this manner the correct form of the density variation near the overlap zone 
mandated by (56) is contained in the model; thus near the overlap zone, e varies rapidly 
but then is almost constant in the rest of the outer layer. In (60), 2 is the simple ramp 
function defined by 

where q m  denotes the intersection of the two functions in (61) with 

Here the values of the parameter K are given by 

for the extended Cebeci-Smith (1974) and Baldwin-Lomax (1978) models, respectively; 
in (63), n,,, was taken to be in terms of the physical distance n from the wall as in the 
corresponding incompressible model. It may be noted that the S* in (60) is still defined 
by (59) and may be viewed as a kinetic displacement thickness whose value is 
principally associated with the velocity distribution. The actual displacement thickness 
for compressible boundary layers contains the influence of both density and velocity 
and was judged to be unsuitable for scaling turbulent velocity profiles over a range of 
surface heat transfer conditions. A variety of other models were also rejected on the 
basis of subsequent data comparisons; these included utilizing different factors of 
density in (60) and/or a length scale similar to (59) but with the integration variable 
being Y. 

Following similar arguments to those used for the eddy-viscosity function, it is easily 
shown using (35) and (53 b) that the compressible eddy conductivity function eH must 
have the following form for small 7:  

K = 0.0168 or K = 0.0168[C,,nm,,~~,,/(UeS*)] (634 b) 

For larger values of 7, the linear dependence on q must be modified and a simple far- 
field eddy-conductivity formula that has been utilized for low-speed subsonic 
compressible flow is (see Weigand 1978 and Walker et al. 1986) 

eHo = Kh Ue S*. (65) 
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Again, a generalization to high-speed compressible flow is sought which conforms to 
the condition (64) and reduces to (65) in the outer part of the boundary layer for low 
Mach numbers. The eddy-conductivity formula adopted is consistent with the form of 
(60) and is 

where 2, is the simple ramp function 

Here yl is defined by (62a) and i j ,  = K , ~ J K ~ .  
Two types of model may be considered for the total enthalpy equation in the outer 

layer. In the first of these, Kh is taken to be specified constant and the value of K~ is 
determined from (48). Extensive comparisons with temperature profile data in subsonic 
boundary layers carried out by Weigand (1978) for flows with and without pressure 
gradients suggest a universal value of Kh = 0.0245 ; this value was used in much of the 
subsequent data comparisons in this study. A second type of model is more 
conventional and is based on a constant turbulent Prandtl number Pr,, which is defined 
by Pr, = c/eH.  If the turbulent Prandtl number is assumed to be constant across the 
outer layer, it follows that 

A value of Pr, E 0.9 is often assumed for low-speed flows. It will be shown in $8 that 
Pr, cannot be specified arbitrarily; such a model is only self-consistent provided that 
Pr, satisfies a relation in which it is defined as a function of Me and Pr. 

Upon substituting (53), (60), and (66) into (46) and (47), it follows that the outer- 
layer defect profiles satisfy 

K / K h  = K / K o  = Pr,. (68) 

where the coefficients in these equations are given by 

Note that it follows from differentiation of (43) that u‘,/u* = O(u,), and consequently 
the second term in (46) is negligible in general provided K is constant. 

The turbulence models for the wall layer are the profile functions U+ and B+ which 
are given in detail in Appendix C, and which were developed by Walker et al. (1986, 
1989) based on the coherent structure of the near-wall flow (Smith et al. 1991). 
Through consideration of representative motions during a typical cycle of the near-wall 
flow, an expression for the mean velocity profile in the wall layer was produced via a 
time average over the representative cycle. The result is an analytic function U+(Y+)  
containing an explicit dependence on the average burst period in the wall layer. A 
similar analysis (Weigand 1978; He 1993) may be carried out for the mean total 
enthalpy distribution and yields the functional dependence quoted in (3 1). Note that 
the use of the Howarth-Dorodnitsyn variable in the analysis of the representative time- 
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dependent motions leading to the construction of the mean total enthalpy profile is 
justified since the total enthalpy field is essentially stratified during the relatively long 
quiescent periods preceding local breakdown of the wall layer (Smith et al. 1991). 

6. Self-similar solutions 
In this section, a set of self-similar outer-layer profiles will be developed, partially as 

a test of the present theory and the new outer-region turbulence models given by (60) 
and (66). A significant portion of measured profile data in supersonic boundary layers 
have been taken at constant mainstream Mach number and, for simplicity, this 
situation will be addressed here. Solutions of (69) and (70) which are functions of 7 
alone and for which Me is constant (b  = 0) are now considered. It follows from (69) 
that under such circumstances a is constant and B must be a function of 7 alone, which 
requires that rl be independent of s from (61). The second condition is satisfied for 
selecting the outer scale do according to 

(72) 

so that yl = 1 from (62a). For the total-enthalpy equation, the additional requirements 
for similarity are that K~ must be independent of s (from (67)), which in turn requires 
that (q*/u*)/( l  -1,) be constant, from (48); it follows from this relation that q;/q, is 
negligible for either constant wall temperature or if I, is slowly varying in s, since 
u’,/u* = O(u,). Thus the third term on the left-hand side of (70) may be neglected, and 
(69) and (70) reduce to 

Ao = Pe ue S*/cOo ~ 7 0 ) ’  

where 6 and tH are given by (61) and (67) but with vl = 1. The solution of (73) which 
satisfies conditions (41 a)  and (42a) is given by 

where C, is the outer-region log-law constant (cf. (42a)) given by 

(76) c, = -  [ yo-log (3 - +El - ( 3 ] - ( ~ ) ” ’ e - ~ ~ 1 ~ ~ ~ e r f c ( , )  aK ‘I’ . 
K 

In (75) and (76) erfc and El denote the complementary error function and exponential 
integral, respectively and yo = 0.577215. .. is Euler’s constant. The solution for the 
total enthalpy function 0, is also given by (75) and (76), but with K and K replaced by 
Kh and K ~ ,  respectively; in addition B,, the outer-region log-law constant for total 
enthalpy (cf. (42b)), replaces C,. 

The solution described above depends on the, as yet, undetermined constant a. 
Integrating (75) across the boundary layer and making use of the boundary conditions 
(41a) and (42a) as well as &(O) = 0, it is easily shown that 

a = - l / e m ,  (77) 
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where F,, is the limiting value of F,(7) as 7 --f 00. For incompressible flow, it is easily 
shown that F,,  = - 1 (Fendell 1972); for compressible flow F,,  may be significantly 
different from one, and the iterative procedure to determine a for a given situation will 
now be described. Consider a particular streamwise location where the following 
dimensional data are known: (a) the mainstream velocity U,*, temperature T,* and 
density p,*; (b) the wall temperature T:; and (c)  the dimensional kinetic (or 
incompressible) displacement thickness a**. In addition, assume that a suitable value 
of the reference density po is defined (this question will be taken up to $7). It is 
worthwhile to note that S** is a convenient definition of a local length scale which is 
often given with tabulations of experimental data (see, for example, Fernholz & Finley 
1977). In general, the kinetic displacement thickness is easily evaluated through 
numerical integration from measurements of u /  U, alone, and consequently only 
involves one source of experimental error. It is related to the dimensionless thickness 
S* defined in (59) by S** = L* ref S* ' 

A Reynolds number based on the kinetic displacement thickness may now be defined 

(78) Re,, = p,* U,* S**/p: = Rep, U, S*/pu,, 
by 

and the velocity and enthalpy match conditions (43) and (44), using (72), become 

Using (l), the definition (59) of S* gives 

S* = / :e)( l -e)dY.  

(79) 

The constant a must be determined so that (81) is satisfied for a given value of S*. 
Because the pressure is constant across the boundary layer, to leading order at any 
streamwise location, it follows from the ideal gas law (3) and (14) that 

= [l +f(y 1) @I [H,-2a(U,) H u 2  1. 
P 

Some care is necessary in the evaluation of the integral in (8 I), which is across the entire 
boundary layer; this is especially true in some of the data cases in the hypersonic 
regime that will be considered subsequently, where the inner layer constitutes a 
significant percentage of the boundary-layer thickness. One difficulty is associated with 
the rapid changes that occur in density in the overlap region and in how many terms 
need to be retained in an expression of (82) in the outer layer to obtain an accurate 
representation as 7 + 0. In the procedure described by He (1993), composite profiles for 
total enthalpy and velocity were constructed, and the density was then evaluated at 
points within the boundary layer from (82). Here an alternative asymptotic approach 
(which yields essentially the same results as those obtained by He 1993) is described in 
Appendix D and this leads to the result 
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where D, and Ei are constants which can be calculated by numerical integration. 
Because 0, and Fi are implicit functions of a (cf. (73) and (74)), it follows that (83) 
constitutes a nonlinear equation for a which was solved iteratively according to the 
following procedure. Starting from an initial guess for a, solutions for Fi(7) and el(?), 
as well as C, and B,, were evaluated from (75) and (76). For a specified value of Kh, 
the profile O,(r) is based on an initial estimate of K ~ .  With B, and Ci computed from 
the formulae in Appendix C (with T i  = 110.2), K~ was then re-evaluated from (48). 
Since B, and Bi are implicit functions of K ~ ,  an inner iteration was carried out to 
determine a converged value of KO. Estimates of u* and q* were then obtained from (79) 
and (80). At this stage, the integrals in (83) were evaluated numerically using a 
trapezoidal rule on a non-uniform mesh that expanded with distance from the wall; 
typically 150 to 300 mesh points were found to give good accuracy. For a given value 
of a, (83) will not in general be satisfied and the value of a was then refined using an 
iteration based on the secant method. Note that for the extended Baldwin-Lomax 
model, a value of C,, = 1.733 was used; for this value of C,, identical results are 
obtained in the limit M,+O for both the extended Cebeci-Smith (1974) and 
Baldwin-Lomax (1978) models. In addition, for the extended Baldwin-Lomax (1978) 
model, a search was carried out - at any stage during the iterative procedure to find 
current estimates of nmaz and cnUz. 

7. The reference condition 
The reference density po appears in the outer scale (72) and the matching conditions 

(79) and (80), and a suitable choice for po and the reference temperature T, is important 
in determining the surface properties, as well as the physical extent of the outer region. 
As discussed in Q 1, the reference condition should be characteristic of the temperature 
in the near-wall region, and here two possible selections will be considered. First define 
the reference temperature as an average temperature across the wall layer according to 

where Y: is some universal large value which is characteristic of the physical extent of 
the wall layer. It can be shown using (14), (19a) and (30a) that 

T, = T, - T, {f(y- 1) M,2 u: A: - (1 +f(y - 1) @) q* B:}, (85) 

to leading order, where the constants AT and B: are given by 

A+ = Lloy' [ U+( Y+)I2 d Y+, Bl = jr' 0+( I") d Y+. 
Y: y : 

Since U+ and O+ are known analytical functions (see Appendix C), AT and B: can be 
readily evaluated, and the results depend parametrically on the logarithmic-law 
constants K, Ci and K ~ ,  B,, as well as the value of Y: used. 

Because the boundary between the inner and outer region is not distinct, it does not 
appear to be possible to define a unique value of Y: based on purely theoretical 
considerations. Since velocity and total enthalpy profile data in the wall layer are 
sparse and often of uncertain reliability, it was decided to establish a universal value 
of Y t  through comparison with direct measurements of skin friction. Over the years, 
there has been considerable effort to improve the reliability of direct measurements of 
wall shear stress utilizing floating element balances (FEB). Currently, such data exist 



176 J.  He, J.  Y. Kazakia and J .  D.  A .  Walker 

0.036 

0.024 

0’. 
% 
n 

I x 
3 

v 

0.012 

36 

FIGURE 1. Comparison of calculated skin friction with data using the reference condition in (84) based 
on Y t  = 60; the data is from Fernholz & Finley (1977, 1981) and tabulated values are given in 
table 1. 

over a wide range of Mach numbers and surface heat transfer rates; these data are 
perhaps least reliable in the hypersonic regime and/or when large temperature 
gradients occur in the boundary layer, but are believed to be credible in the supersonic 
regime and when the surface heat transfer rates are low to moderate. A number of data 
sets where the skin friction was measured directly by the FEB method were selected 
from the compilations of Fernholz & Finley (1977, 1981); generally, the data stations 
closest to the end of the test section were selected in the expectation that such profiles 
would be closest to self-similar behaviour. The range of mainstream Mach numbers by 
these data is 0 < Me < 11.5 with temperature ratios of 0.22 < Tw/T, d 1 ; here T, is the 
recovery temperature defined by 

T, = T,[1 + : r , ( y - l ) M f ] 7  (87) 

with r ,  z Prli3 being the recovery factor for turbulent flow. Thus the cases for which 
FEB data are available cover a wide range of Mach numbers and comprise both 
adiabatic flows and strongly cooled walls. With the reference temperature defined by 
(84) for some fixed value of Y:, solutions were obtained for the velocity and total 
enthalpy profiles using the procedure outlined in $6. This calculation produces a 
predicted value of the skin friction coefficient cf defined by 

and the results of this calculation for Y t  = 60 are shown in figure 1 and table 1 for a 
range of data sets. The circles on figure 1 represent cases where the wall is nearly 
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adiabatic (table 1 a), while the squares denote the situations where the wall is strongly 
cooled (table lb). In figure 1 ,  the predicted value of cf are compared to the direct 
experimental measurements, and when both agree, the plotted point will lie directly on 
the line. It may be noted that the data are presented in terms of (y  - 1) Mz cf, which was 
found to be a convenient quantity with which to present the influence of Reynolds 
number, Mach number, and surface heat transfer. Generally cf decreases when one of 
Re or Me is held constant and the other is increased; in contrast, cooling of the wall 
generally leads to an increase in cr Thus if cf alone were used in figure 1, high-speed 
data would appear shifted to the left and cold-wall data would appear far to the right. 
In Figure 1, the portion to the left of the graph contains high-Reynolds-number, low- 
Mach-number and nearly adiabatic flows, while that to the right contains high-Mach- 
number flows (with relatively lower values of Re) and/or strongly cooled walls. Note 
that the factor y-  1 facilitates comparison for different gases. 

It is evident from figure 1 that the calculated values of cf for Y: = 60 in (84) are in 
reasonable agreement with the direct FEB measurements. For the cases given in table 
l ( a )  where the wall is almost adiabatic, the discrepancies between measured and 
calculated values of cf are always less than 4 YO. For hypersonic flows in helium, there 
is somewhat more scatter, but even here the discrepancies are less than 6 YO. For the air 
flows with heat transfer listed in table 1 (b), the calculated values are within 5 YO of the 
measured values up to a Mach number of 7 and down to a temperature ratio of 0.2. 

Similar calculations for a range of Y:  from 40 to 70 have been carried out by He 
(1993), and the results suggest that the best results are obtained with YF = 60 defining 
the extent of the wall layer in (84). It is of interest here to reinforce the importance of 
using a realistic reference condition by considering the case Y: = 0, which corresponds 
to using the wall value for the reference temperature (T, = T,). Calculated results for 
this choice are shown in figure 2, and upon comparison with figure 1, it may be seen 
that the representation of data is now much worse. It is evident that To = T, is not a 
good choice even in the supersonic range. The reference temperature defined by (84) is 
representative of both the inner and outer layers near the overlap zone, and it may be 
noted that for a strongly cooled wall, T, (evaluated from (84)) can be substantially 
larger than either T, or T,; as is evident in figure 2, the cold-wall cases are especially 
poorly represented with the choice To = T,. 

In (84), the reference temperature is defined as an average across the wall layer and 
evaluation of T, requires an integration. The integration for A: need only be carried out 
once for the velocity profile, but since K~ depends on the surface heat transfer rate, 
varies from case to case. For the cases shown in figures 1 and 2, values of K = 0.41 and 
Ci = 5.0 were used, and these result in A: = 142.84 in (85) and (86); for these cases, 
B: varied from 9.544 to 9.565 and, in principle, a constant value of = 9.56 could be 
used in applying the present theory. An alternative, and perhaps more convenient 
means of selecting the reference condition, is due to Burggraf (1962), who defined the 
reference condition at Y i  = 11. Such a choice may be interpreted as a mean 
temperature across the wall layer, and several possible values were considered by He 
(1993); it was determined that with To = T,(Yi) and Y i  = 23, the best overall 
correspondence with experimental data was obtained. Calculated results for this case 
are given by He (1993) and show virtually the same type of agreement as depicted in 
figure 1 and table 1. 
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FIGURE 2. Comparison of calculated skin friction with experimental data using the wall 
temperature as a reference condition. 

8. The turbulent Prandtl number 
The second type of turbulence model considered here for the total enthalpy equation 

corresponds to a constant turbulent Prandtl number for the outer layer. The first issue 
to be addressed concerns the circumstances under which such a model is self-consistent 
within the present framework. To consider this question, first it may be noted that if 
Me = 0 and the inner-layer contribution is neglected, a = 1 in (77) and (83); with 
increasing Me, the values of a calculated from (83) generally are found to decrease 
toward zero. Consequently, if a is defined by 

a = ( a K / 2 K y ,  (89) 
it follows that a is small in general and therefore the functions in (76), and the 
corresponding expression for B,, may be expanded for small argument. For constant 
turbulent Prandtl number, Kh = K/Pr ,  and K* = K / P Y ~  according to (68), and it may be 
easily shown that (49) can be written 

7c 7c1/2 

4a 2 
K(B,/Pr,-C,) = - ; logPr--(Pr; l 'z-  l)+-a(Pri/2- 1) 

7cl /2  

4 
+ga2(Pr,- l)--a3(Pr?/'-  l)-&a4(Pr,2- 1)+ ... . (90) 

The inner-region models used in the present study are described in Appendix C, and 
it may be shown that the left-hand side of (90) gives 

K 
K(Bi/Prt - Ci) = - (n:T;)l/' (Pr'/' Pr-' t - 1) 

2 
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Consequently for a given model, Prandtl number, and value of a, (90) and (91) describe 
a nonlinear relation for Pr, which can easily be solved numerically. A rapidly 
convergent explicit series solution can be constructed of the form 

where 
2a2 16a3 3a4 16a5 

3n nli2 15n 
P(a) = l+Ba+p+-----  + ... , 

A - B  2a2 8a3 5a4 801' 
Q(a) =-a+-+------+ ... 2 7p x1/2 3 ' 

and A and B are constants given by 

B = A + -  l+- (nT;Pr)'/'. :( 2&) 

(93 4 

(93 b) 

(94 b) 

For given values of a, the turbulent Prandtl number may be evaluated directly from 
(92). In the incompressible limit M,+O a = 1 and a = 0.2235 (for K = 0.0168, 
K = 0.41); for the inner-layer parameters listed in (C 10) and Pr  = 0.72, a value of 
Pr, = 0.872 may be calculated. This value compares favourably with the estimate of 
Pr, FZ 0.9 that is commonly used (see, for example, Fernholz & Finley 1980). It should 
be noted that (92) constitutes a theoretical prediction of Pr, and that in general Pr, 
cannot be specified arbitrarily if the outer-layer formulation is to remain self- 
consistent. In addition, it is worthwhile to emphasize that the present wall-layer 
formulation for total enthalpy is not a constant-Pr, model; this would seem to be 
desirable in general since measurements imply a significant variation in Pr, across the 
wall layer in subsonic flow (see, for example, Crawford & Kays 1980, p. 226). 

For increasing Me, the results calculated for a from (83) indicate that a+O as 
Me --f co, and it is evident from (92) that in this limit Pr, + 1. Calculated values of a for 
Me lying in the range 0 < Me < 00 lie in the interval 0.872 < Pr, < 1 for P r  = 0.72, and 
the results were closely curve-fitted with the following relation : 

1 - exp ( -Po abl) 

1 -exp(-Po) ' 
Pr, = 1-0.128 (95) 

where Po = 1.6794 and PI = 0.4084. It is easily confirmed that there is a relatively slow 
variation for Pr, in the range 0.5 < a < 1, where the bulk of the supersonic data falls. 

9. Calculated results 

evaluated as follows. The inner variable Y+ is related to 7 by 
Profiles for velocity and total enthalpy across the entire boundary layer were 

6* 7, y+ = Re 
PW 

and with u* determined from (79), a composite profile for the velocity across the 
boundary layer is given by 
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Case no. 

(a) 73020402* 
58020207 
74021 801* 
65060 101 
65060 105 
72 090 402* 
79030 103*(N) 
72 040 20 1 
72 040 60 1 
71 030207(H) 
71 030406(H) 
73 050 504(H) 

(b) f-1048 
f-1548 
f-2048 
67010 105 
67 0 10 204 
72050 103 
72 020 205 
72 02 1 203 
73 010 501 

Me 
0.793 
2.739 
4.517 
4.886 
4.801 
7.780 
8.788 
6.390 
6.500 
6.686 
6.686 

2.160 
2.170 
2.140 
5.970 
6.040 
7.200 
4.823 
4.857 
4.742 

10.31 

TWIT Re,. 
a 1 139480 
a 1 12255 
1.0242 6945.5 
0.9755 6699.7 
0.5228 4987.8 
0.7998 5686.5 
0.3375 7518.1 
0.3136 7667.2 
0.5014 8435.7 
0.9811 33813 
0.9817 6580.2 
z 1 17177 

1.021 6450.5 
1.475 5139.6 
1.961 4831.9 
0.4888 14120 
0.4257 12083 
0.4764 10433 
0.9277 20730 
0.2279 56517 
1.0212 12352 

PolPw 
1.0109 
1.1300 
1.2730 
1.2709 
0.9670 
1.3001 
0.841 1 
0.7468 
0.9797 
1.6187 
1.4610 
1.4627 

1.1174 
1.2995 
1.428 1 
0.9259 
0.8672 
0.9610 
1.1697 
0.5546 
1.2397 

a* 
0.0308 
0.0422 
0.0507 
0.0514 
0.0460 
0.0562 
0.0461 
0.0405 
0.0458 
0.0721 
0.0617 
0.0600 

0.0439 
0.0491 
0.0525 
0.0414 
0.0409 
0.045 1 
0.0435 
0.0275 
0.0473 

U*l,,P 

0.0303 
0.0421 
0.0507 
0.0514 
0.0450 
- 

- 

0.0399 
0.0463 

- 

0.0443 

0.0251 
- 

- 

4* 
0.0005 
0.003 1 
0.0037 
0.0068 
0.0286 
0.0188 
0.0382 
0.0348 
0.0297 
0.0101 
0.0086 
0.0072 

0.0021 
0.0233 

-0.0539 
0.0274 
0.0300 
0.0305 
0.0079 
0.0261 
0.0037 

TABLE 2. (a) Computed dimensionless friction velocity and heat flux values for Y t  = 60 in equation 
(84); (H) denotes that the gas is helium and (N) denotes nitrogen. An asterisk signifies that direct 
measurements of total temperature were made and u*leZp is the measured experimental value. In (b) 
direct measurements of total temperature were made in every case. 

1 1 
ucomp = ue+u* u, -+ U+(Y+)--log r+-ci . [: K 

(97) 

A composite profile for dimensionless total enthalpy I = H / H ,  may be constructed 
according to 

and (97) and (98) were used to compare directly against experimental data. The 
calculated results described in this section are based on a specified value of the eddy 
conductivity constant Kh = 0.0245. 

Direct comparisons were carried out with several sets of experimental data, and the 
theoretical profiles will be compared with several cases listed in table 2. Most of the 
profiles are taken from the data compiled by Fernholz & Finley (1977, 1981) and here 
the same identification scheme is used; the first four digits identify a particular 
experiment while the last four designate a specific profile. Generally, profiles near the 
end of a test section were selected since these were expected to be closest to self-similar 
conditions. In all cases, the velocity distribution was measured in the experiments 
across the boundary layer, but for much of the data listed in table 2(a),  temperature 
‘data’ were inferred from some version of the Crocco integral (Fernholz & Finley 1977, 
1980); usually the Crocco-Walz relation was used which is given by 



182 J 

30 

20 

10 

u+ 0 

0 

0 

1 .o 

1 .o 

2 1.0 
Tw 

0.5 

0 

He, J .  Y. Kazakia and J .  D. A .  Walker 

73020402 

71030406 

I I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1  I I "mil 

10’ 102 103 104 
Y+ 

FIGURE 3. Comparison of calculated profiles for adiabatic flows for (a) velocity and (b)  static 
temperature with experimental data (7302, Winter & Gaude 1973; 5820, Stalmach 1958; 7402, 
Mabey, Meier & Sawyer 1974; 7103, Fischer & Maddalon 1971). Note the shifted origins. 
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FIGURE 4. Comparison of calculated profiles for supersonic flow with heat transfer for (a) velocity 
and (b) static temperature with experimental data (6506, Young 1965; 7209, Stone & Gary 1972). 
Note the shifted origins. 
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FIGURE 5. Comparison of calculated profiles for supersonic flow with heat transfer for (a) velocity and 
(b) static temperature with experimental data (7204, Keener & Hopkin 1972; 7903, Bartlett et al. 
1979). Note the shifted origins. 
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where T, is the recovery temperature defined in (87). In table 2, T,/T, x 1 denotes that 
the wall is nearly adiabatic while Tw/T, < 1 represents a cooled wall and Tw/T > 1 
signifies a heated wall. For an adiabatic wall, qw = 0 and H = H,, to leading order, 
across the boundary layer. However, H,  < H, in all adiabatic-wall experiments and 
the difference (He - H,) increases with increasing M,; this influence is due to higher- 
order terms in the wall-layer expansions which are associated with viscous dissipation 
and the turbulence and are not accounted for in the present theory. There is, of course, 
some uncertainty as to whether a wall is truly adiabatic in a given experimental 
situation. The adiabatic-wall cases were represented here by using the value of the 
experimental wall temperature, as quoted by Fernholz & Finley (1977, 1981); this 
procedure results in a calculated profile for total enthalpy with a very small value of 
q* (cf. table 2). 

Direct comparisons of the present profile with experimental data are shown in figure 
3 for adiabatic flows having increasing Mach number; in these and subsequent figures 
the quantities plotted are U+ = U , , , ~ / U ,  and T/T, = ( ~ o ~ p - ~ a u ~ o m p / ~ ) / ~ .  It is 
evident that the logarithmic portion of the profile narrows with increasing Mach 
number, with the velocity approaching the mainstream value at a relatively slower rate. 
The present self-similar profiles show this behaviour and, in addition, represent the 
data very well. In figures 4 and 5,  flows in the upper supersonic range and low 
hypersonic range with heat transfer at the surface, corresponding to cooling of the wall, 
are shown; comparisons for hypersonic adiabatic flows are shown in figure 6 .  Although 
there appears to be some scatter in the data closest to the wall in some cases, the self- 
similar solutions do agree with the experimental data reasonably well. 

The data listed in table 2(b) are of special interest since the total temperature was 
measured directly. Again calculations for the modified Cebeci-Smith and Baldwin- 
Lomax models produce similar results (He 1993). The first set of profiles, shown 
in figure 7, is taken from recent experiments of Carvin (1988) which were at relatively 
low supersonic Mach number (Me x 2.2) over both an adiabatic and heated surface. 
The first two digits used in the labelling scheme adopted here denote the value of the 
temperature ratio T,/T,, while the last two numbers signify the distance (in cm) of the 
measurement station from the leading edge (in these experiments, 48 denotes the end 
of the test section). It may be noted that the trends in these data are not realistic near 
the wall, and the problem appears to be persistent throughout Carvin’s (1988) 
measurements ; nevertheless, the agreement between theory and the data is quite 
reasonable. 

In figure 8, profiles for axisymmetric flows with strong heat transfer and high Mach 
number are shown; this environment is typical for re-entry vehicles and missiles. In 
obtaining these results, the kinetic displacement thickness was evaluated in the manner 
described by Fernholz & Finley (1977) for thin axisymmetric bodies (see also He 1993). 
Again, the theoretical profiles are seen to represent the data reasonably well. 

Finally, three profiles are shown in figure 9 corresponding to a situation which 
should be outside the scope of the present self-similar solutions where the boundary 
layer is in the process of recovering from a significant upstream disturbance. In the flow 
from which profile 72021 203 was taken, substantial cooling occurred in a nozzle throat 
upstream, and thus there are downstream history effects associated with both heat 
transfer and pressure gradient; the flow from which profile 72020205 was taken is 
similar, but the nozzle was not cooled. For the case 72010501, the upstream nozzle 
throat was heated and contained a predominantly reflected-wave expansion. Although 
none of the situations shown in figure 9 are close to being self-similar, it is evident that 
the representation of the velocity and temperature profiles is still quite reasonable, 
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FIGURE 6. Comparison of calculated profiles for hypersonic adiabatic flow for (a) velocity and (b) 
static temperature with experimental data (7103, Fischer & Maddalon 1971 ; 7305, Watson, Harris & 
Anders 1973). Note the shifted origins. 
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FIGURE 7. Comparison of calculated profiles for adiabatic and heated walls (Carvin 1988) for 
(a) velocity and (b) static temperature. Note the shifted origins. 
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FIGURE 8. Comparison of calculated profiles for hypersonic axisymmetric flows with heat transfer for 
(a) velocity and (b) static temperature with experimental data (6701, Samuels, Peterson & Adcock 
1967; 7205, Horstman & Owen 1972). Note the shifted origins. 
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FIGURE 9. Comparison of calculated profiles for (a) velocity and (b) static temperature with 
experimental data (7202, Voisinet & Lee 1972; 7301, Gates 1973); these flows are recovering from an 
upstream disturbance. 
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Y+ 

FIGURE 10. Comparison of total enthalpy profiles for a heated wall (f-1548, Me = 2.17); an 
adiabatic wall (73010501, M ,  = 4.74) and a cold wall (65060105, Me = 4.8). Note the shifted 
origins. 

especially in the wall layer where the data appear to closely conform to the wall 
function solutions. 

Comparisons for total enthalpy are shown in figure 10 for cases corresponding to a 
heated wall, an adiabatic wall, and a cold wall. The logarithmic portion of the 
composite profile may be noted, which in each case is consistent with the trends in the 
data. One feature which appears to be common in adiabatic-wall data, and is not 
accounted for in the present theory, is the slight increase and overshoot in the data 
close to the mainstream; this aspect has recently been considered by He et al. (1992). 

Calculations were also carried out for all cases using the constant turbulent Prandtl 
number model described in 0 8. These results are almost graphically indistinguishable 
from those presented in figures 3-10; in addition, the predicted skin-friction values 
were virtually the same with only slight differences noted in the predicted values of the 
heat transfer parameters q* at the wall. It is worthwhile to note that a closer 
correspondence for a given profile can be achieved by adjusting the parameters in the 
turbulence models in (61) and (67), such as K and Kh. However, the objective here is 
to demonstrate that there is a degree of universality over a range of Mach numbers 
using the present models, and so no attempt to ‘fit’ the data was made; the present 
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profiles were produced solely from the known physical quantities at the wall and the 
mainstream at each data station, as well as the value of the kinetic displacement 
thickness a**. 

The calculated values of the skin-friction parameter u* are given in table 2 and may 
be compared with the quoted experimental values. The theoretical estimates are 
reasonably close to the experimental values, with better correspondence occurring with 
the more recent measurements. The heat transfer parameter q* is also listed in table 2 
which, as anticipated, is very small and at least an order of magnitude smaller than u* 
for the adiabatic cases; for flows with heat transfer, u* and q* are of comparable 
magnitude. 

10. Conclusions 
In the present study, good comparisons have been obtained between the self-similar 

profiles for velocity and total enthalpy and experimental profile data, in both two- 
dimensional and axisymmetric boundary-layer flows and over a wide range of 
conditions. Two extensions of simple algebraic turbulence models to high-speed 
compressible flow have been suggested and both have been found to give similar 
results. The good comparisons with the experimental data tend to validate the simple 
asymptotic structure proposed in this study in which both the velocity and total 
enthalpy conform to a simple logarithmic behaviour in terms of the Howarth- 
Dorodnitsyn variable within the overlap zone. As a consequence, the present 
compressible turbulence models may be utilized in more general flows with pressure 
gradients (see also Weigand 1978). 

It may be noted that He, Kazakia & Walker (1990) and He (1993) have also carried 
out data comparisons using the wall temperature as the reference condition; these 
results show profile comparisons which are visually almost indistinguishable from 
those presented in figures 3-10. However, utilizing the reference condition defined in this 
paper (as either an average or a mean temperature across the wall layer) significantly 
improves the agreement with direct measurements of the skin friction. The results 
obtained with the outer turbulence model for the total enthalpy equation are essentially 
the same for constant-pressure flow using either Kh = 0.0245 or a constant turbulent 
Prandtl number, as described in $8. This suggests that the most critical issue in the 
turbulence model is associated with obtaining the proper profile slope in the overlap 
zone (i.e. the value of KJ,  while the particular value of Kh is of relatively less 
importance, with different values producing only slight changes in the total enthalpy 
profile shape in the outer part of the boundary layer. 

The present self-similar profiles have been shown to represent data very well. The 
variation of the velocity and temperature profile with Mach number for a fixed value 
of Re,, and an adiabatic wall is shown in figure 1 1. The relative growth in the thickness 
of the wall layer as Me increases may be observed in figure ll(a), where a smaller 
percentage of the mainstream speed is achieved at fixed y / 6 ;  in addition, the variation 
in static temperature becomes more severe in the wall layer with increasing Me, as 
illustrated in figure 11 (b). In figure 11 (c), the influence of wall cooling is shown for a 
fixed mainstream Mach number and Re,,. 

Lastly, it is of interest to compare the present temperature profiles with the 
Crocco-Walz distribution (99) which gives T/T,  as a function of u/Ue alone. In figure 
12(a), a comparison is made for fixed Re,, for adiabatic flows over a range of Mach 
numbers, and it is evident that the agreement is very good. In figure 12(b), a 
comparison is carried out over a range of surface heat transfer conditions for fixed 
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FIGURE 11. Profile behaviour for Re,, = 10000: variation of (a) velocity and (b) static temperature 
with M e  for an adiabatic wall; (c) static temperature variation with Tw/T, for Me = 7. 

values of Me and Re,,. It may be noted that again the agreement is reasonable, but 
deviations become progressively larger with increasing surface heat transfer rates. Thus 
the present theory is in reasonable agreement with the classical Crocco-Walz result 
and constitutes a viable alternative approach to the description of the high-speed 
compressible turbulent boundary layer. The structure and models presented here are 
self-consistent, and it is hoped that the present work will form a firm basis for extension 
of the theory into the upper hypersonic range. The programs used to obtain the profile 
in this paper are available from the authors upon request. 
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FIGURE 12. Comparison of CroccwWalz (-----) relation (99) for static temperature with the present 
theory (-) for Re, = 10000; (a) variation with Me in adiabatic flow and (b) variation with TWIT 
for Me = 5. 
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Appendix A 
Here it is argued that the Chapman-Rubesin law pp = pw pw is valid to leading order 

in the turbulent wall layer in the limit of large Reynolds number. At any streamwise 
location in the boundary layer, p is independent of n to leading order, and thus 
p T  = pw Tw for any fixed streamwise location s. From (14), 

According to (19a), (30a), and (A l), T z  Tw in the wall layer to leading order. 
Consequently, if the variation of viscosity is given by either the Sutherland law or, even 
for a power law such as p K T" (Stewartson 1964), it follows that 

2!5= 1 +O(u*), 
P W Y W  

to leading order in the wall. 

Appendix B 

9' denote a dimensionless rate of total energy loss (with respect to pFef 
In this Appendix, the physical significance of the terms in (27) will be described. Let 

T:ef) 
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occurring within a control volume of unit length in the streamwise and spanwise 
directions and between the wall and a height n, defined by 

2 = (7- l)M$,, s: 7-dn. :: (B 1) 

However, for n within the wall layer 7 is constant and using (8a), (19a) and (21), it 
follows that in the wall layer 

The positive quantity 2 consists of terms associated with viscous dissipation into heat 
energy and the production of turbulent kinetic energy, respectively. Define dimension- 
less total fluxes (with respect to p:ef UFefc; T$f) due to molecular conduction and 
the turbulence at height Y+, toward the wall, by 

But in the present dimensionless variables 
- 

-pv'T' = #+(7- l ) M $ e f ~ ~ ,  

and it follows that (27) is an energy balance which reads 

qw = qturb+2+qco%d'  (B 6) 

Thus, the total energy conducted to the wall is balanced by the sum of the fluxes into 
the control volume at height Y+ and the total energy loss within. For a hot wall qw < 0 
and for a cold wall qw > 0. 

Appendix C 
In this Appendix, the analytical embedded functions for the wall-layer profiles of 

velocity and total enthalpy are summarized (Walker et al. 1986, 1989). Both wall-layer 
profile models are of the form 

U+,@ = (1 +&)[R(Ti ,  t;)Q(?)+Z(p+)]-L[R(O, ti)Q(?)+Z(?)]. (C 1) 

Here t i  is a parameter (to be determined) and T i  is the mean period between bursts 
in the wall layer having a typical value of T i  = 110.2 (Walker et al. 1989). The 
functions in (C 1) are given by 

t+ 

T i  

(C 2) 
1 1 

R(t, t i )  = ci --(+yo - log 2) +-log ( t  + t i ) ,  
K 2K 
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For the velocity profile U+, Ci is the inner region log-law constant (cf. ( ~ O C ) ) ,  K is the 
von Karman constant and yo is Euler's constant. For the total enthalpy profile Of, 
replace K with K~ and Ci with B, in ( C 2 ) .  For the velocity profile U+, the normal 
variables appearing in (C 1 )  are 

- Y+ - Y +  y+  = +--  

2( T i  + ' yo  - 2(t,+)lI2 

while for the enthalpy profile O+, Y+ is replaced with Y,f in (C 5 )  (cf. (31)). Finally, the 
function B is defined by 

E( y )  = e-" [ ec2 e-"' dx d( dz. (C 6 )  
0 0 0  

A list of the properties of this function is given by Walker & Scharnhorst (1986) and, 
in particular, it may be shown that 

At the wall, the profiles U +  and O+ satisfy (20a,b) and (33a,b) respectively; in 
addition, both profiles must satisfy the wall compatibility conditions which are that the 
second and third profile derivatives must vanish at Y +  = 0; for the velocity profile U+, 
these conditions require that (Walker et al. 1989) 

(T;+t i )1 /2[R(TL,  t:)- 1/K]-(ti)1'2{R(0, t:)- I / K }  = $i?"TL, (C 8 )  
(C 9)  ( T i  + R(Ti ,  t i )  -(t:)-'I2 R(0, t i )  = 0. 

For the total enthalpy profile, K~ replaces K in (C 8) ,  (C 9) and B, replaces C, in (C 2) ;  
in addition, the right-hand side of (C 8 )  is multiplied by Pr'/2. 

For the velocity profile U+,  it may be readily inferred that (C 1) contains the 
following parameters : (a) the von Karman constant K, (b) the inner 'log-law ' constant 
C,, (c) the burst period T i  and ( d )  t i .  These parameters are not independent since 
(C 8 )  and (C 9)  provide two interconnecting relations. For example, for the commonly 
used values of K = 0.41 and Ci = 5.0, the solution of (C 8 )  and (C 9) gives 

and this value of T i  compares favourably with experimental measurements (Walker et 
al. 1989). Other values of K and/or T i  may be used to produce other values of Ci; in 
general TL is large with respect to t i ,  and thus an expansion of (C 8 )  and (C 9) for small 

T i  = 110.2, t i  = 0.00801 (C 10) 

to leading order. This relation gives C, as an explicit function of K and T i ;  the estimate 
of Ci may be refined by iteratively solving (C 8 )  and (C 9) for given values of K and T i .  
For total enthalpy, a corresponding estimate of B, is obtained by replacing K by K~ and 
replacing T i  by T i  Pr1/2 in the term on the right-hand side of (C 8). 

Appendix D 

is described. Let 
In this Appendix, the procedure for evaluation of the kinetic displacement thickness 

denote some small value of Y and write the integral (81)  in the form 

6* = A "  6. t (1  - 6) dy + A,  loy' t ( 1  -6) d Y+,  

Pl? 
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where f 1  = & / A ,  and Y:  = YJA, .  The two terms on the right-hand side of (D 1) are 
the contributions associated with the outer and inner regions respectively. Substitution 
of (37) into (82) gives 

aF, a 6 = 1 + [ 1 + f(y - 1) A43 q* 8, - au, u: gy + . . .] (D 2) 
P a7 2 

in the outer layer. Note that the last term in (D 2) must be retained, since it is significant 
in the overlap zone (but not elsewhere) as 7 + 0, since afJa7 is logarithmic. It should 
also be noted that the next term in the outer velocity expansion (37a) is O(u2,) which 
is formally of the same order as the last term in (D 2); however, as discussed by Degani 
et al. (1992), the second-order term is generally O( 1) as 7 + 0 and thus does not make 
a contribution comparable to the terms retained in (D 2). Denoting the inner- and 
outer-layer contributions in (D 1) by I, and I, respectively, it is easily shown that 

(D 3) 

(D 4) 

for v1 + 0. On the other hand, in the inner layer 

and for Y: large, it can be shown that the inner-layer contribution in (D 1) is of the 
pe/p = [l +a(?- 1)M:][I,+g*8+-fau;(U+)2+...] 

form 
I, - I ,  Y: -I, u* 6+( Y:) + q* S+( Y:) + O(ui), 

where the functions 6+ and 6 are the integrals 

It is easily shown that for large Y i  

(log Pr'I2 Y+ - 1) + B, Y+  + Ei. e"+ N - (D 8) 
Y+ 

K8 

The constants Di and E, can be evaluated by numerical integrations (D 6) and, for 
example, for K = 0.41 and C, = 5.0, it can be shown that Di = -66.9. 

The contribution Ii may be written in terms of 7, by substituting Y: = po Re,, fJp, 
in (D 5 ) ;  using the match condition (79) and (77), the limit r1+0 is taken 
(corresponding to Re,, + co with Y: fixed and large). This procedure leads to the result 
(83). 
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